

CALIFORNIA COASTAL COMMISSION

45 FREMONT, SUITE 2000 SAN FRANCISCO, CA 94105-2219 VOICE AND TDD (415) 904-5200

Tu5a

Date Filed: 10/11/00

Hearing held

and continued: 11/14/00 49th Day: 11/29/00 180th Day: 04/09/01 Staff: DAC/MJJ-SF Staff Report: 02/28/01 Hearing Date: 03/13/01 Item No. Tu5a

STAFF REPORT REGULAR CALENDAR

APPLICATION FILE NO.: E-00-014

APPLICANTS: Southern California Edison Company, San

Diego Gas and Electric Company, City of

Anaheim, and City of Riverside

PROJECT DESCRIPTION: Construction of San Onofre Nuclear Generating Station

(SONGS) Units 2 and 3 temporary spent nuclear fuel storage

facility.

PROJECT LOCATION: 5000 Pacific Coast Highway (unincorporated San Diego

County). (Exhibit 1)

SUBSTANTIVE FILE

DOCUMENTS: See Appendix B

SYNOPSIS

Southern California Edison Company, San Diego Gas and Electric Company, the City of Anaheim, and the City of Riverside (hereinafter, applicants) propose to construct a temporary spent nuclear fuel storage facility at the San Onofre Nuclear Generating Station (SONGS), located in an unincorporated portion of northern San Diego County. The facility will house spent fuel used to

generate electricity at SONGS Units 2 and 3. It will be located on an existing, developed industrial site at Unit 1.

The applicants propose to construct three separate steel-reinforced concrete pads (covering an approximate area of 25,550 square feet) and approximately 104 steel-reinforced concrete fuel storage modules that will be placed on top of the pads. The facility will be designed and constructed in accordance with the SONGS 2 and 3 Nuclear Regulatory Commission (NRC) operating licenses and NRC regulations. The fuel storage facility will be constructed in three separate phases from approximately 2002 to 2015.

According to the applicants, additional storage capacity is necessary to store SONGS 2 and 3 spent fuel until their NRC operating licenses expire in 2022. The SONGS 2 and 3 spent fuel storage pools currently provide the capacity to store all fuel that will be used by both units through roughly 2007. The applicants are proposing dry storage, as opposed to a new pool storage facility, because the method is more economical and it places the fuel into containers that can be removed from the SONGS site by the Department of Energy when its permanent repository becomes available. Some fuel currently stored in water-filled pools will be transferred to the proposed storage facility until the U.S. Department of Energy (DOE), under obligation pursuant to the Nuclear Waste Policy Act of 1982, accepts the fuel for final disposal at a federal repository. The applicants will continue to use the existing SONGS 2 and 3 pool spent fuel storage facility. Spent fuel will be stored in these pools for a minimum of five years before it is transferred to dry storage.

The U.S. Nuclear Regulatory Commission has sole jurisdiction over the regulation of nuclear power plants, including radioactive hazards, safety issues, and spent fuel handing and storage. The State of California is preempted from imposing upon nuclear power plant operators any regulatory requirements concerning radiation hazards and nuclear safety. The possession, handling, storage, and transportation of spent nuclear fuel similarly are precluded from state regulation. The applicants' SONGS 2 and 3 operating licenses require them to comply with all NRC regulations that apply to the operations and activities conducted at those units, including the possession, use, and storage of nuclear fuel. The applicants will control and monitor radioactive releases from the proposed project using the same programs and procedures currently implemented for the commercial operation of the plant.

On November 14, 2000, the Coastal Commission held a public hearing and continued this application, requesting that staff address the geologic stability of the proposed project, including, but not limited to, potential hazards from earthquakes, tsunamis, and landslides, consistent with Section 30253 of the Coastal Act. This staff report addresses these issues.

Coastal Act Issues

The San Onofre bluffs, site of the SONGS facility, are an area of high geologic, flood and fire hazard. The Commission has identified the following geologic issues that must be considered to find that the proposed development will minimize risk to life and property (including the proposed development), and to assure stability and structural integrity at the site: seismic safety (including ground shaking, fault rupture, liquefaction, and tsunami runup), bearing capacity of the foundation

elements, safety from coastal bluff retreat and shoreline erosion, and stability of slopes adjacent to the proposed development. As proposed, the project will minimize risk to life and property and will not create nor contribute significantly to erosion, geologic instability, or destruction of the site or surrounding area.

Because the proposed project will take place on an existing, industrial site currently occupied by SONGS 1, no on-site biological resources exist. Potential lighting and noise impacts to nearby environmentally sensitive habitat areas will be avoided. Recreation on and public access to the adjacent San Onofre State Beach will not be restricted during project operations. All relevant air quality permits, if required, will be obtained through the San Diego County Air Pollution Control District.

Commission staff recommends approval of the proposed project, as conditioned.

1.0 STAFF RECOMMENDATION

1.1 Approval with Conditions

The staff recommends conditional approval of Coastal Development Permit application No. E-00-014.

Motion:

I move that the Commission approve Coastal Development Permit Application No. E-00-014, subject to the conditions set forth in the staff recommendation dated February 28, 2001.

The staff recommends a <u>YES</u> vote. To pass the motion, a majority vote of the Commissioners present is required. Approval of the motion will result in the adoption of the following resolution and findings.

Resolution:

The Commission hereby approves Coastal Development Permit E-00-014 and adopts the findings set forth below on grounds that the development as conditioned will be in conformity with the policies of Chapter 3 of the Coastal Act and will not prejudice the ability of the local government having jurisdiction over the area to prepare a Local Coastal Program conforming to the provisions of Chapter 3. Approval of the permit complies with the California Environmental Quality Act because either 1) feasible mitigation measures and/or alternatives have been incorporated to substantially lessen any significant adverse effects of the development on the environment, or 2) there are no further feasible mitigation measures or alternatives that would substantially lessen any significant adverse impacts of the development on the environment.

2.0 STANDARD CONDITIONS

See Appendix A

3.0 SPECIAL CONDITIONS

The Commission grants this permit subject to the following special conditions:

- Construction Debris. Construction debris generated as part of the proposed project shall at
 the earliest practicable opportunity be disposed of at an appropriate offsite facility. Any
 construction debris or material present on-site, including construction debris or material
 subject to removal in accordance with the preceding requirement, that could potentially
 contribute to increased sediment loading shall be covered and/or contained during
 precipitation events.
- 2. **Sump Monitoring and Maintenance**. Sediment and other material that collects in the on-site sump from the project site's yard (storm water) drains shall be monitored and removed before such sediment or material reach quantities sufficient to pose a risk to the proper functioning of the sump.

4.0 FINDINGS AND DECLARATIONS

The Commission finds and declares the following:

4.1 PROJECT DESCRIPTION

Project Location

The San Onofre Nuclear Generating Station (SONGS) is located in an unincorporated area of northern San Diego County on the United States Marine Corps Base, Camp Pendleton (Exhibit 1).

Background and Preemption of State Regulation

SONGS Units 2 and 3 have operated as 1127-megawatt commercial nuclear power plants since 1983 and 1984, respectively. Both units were constructed on land leased from the U.S. Department of the Navy, U.S. Marine Corp Base, Camp Pendleton. SONGS Unit 1, currently non-operational and in the process of being decommissioned, is located adjacent to and immediately north of Unit 2. The entire SONGS site covers 83.6 acres. SONGS 2 and 3 are collectively owned by Southern California Edison (75.05% interest), San Diego Gas and Electric Company (20%), the City of Anaheim (3.16%), and the City of Riverside (1.79%).

A power plant that uses radioisotopes in the production of energy is required to comply with the federal Atomic Energy Act (Act) (42 U.S.C. Sect. 2011). The Nuclear Regulatory Commission (NRC) was created to issue operating licenses under the Act and to enforce the requirements of the Act and a plant's operating license. Federal regulations (e.g., 10 CFR Parts 20, 50, 71 and 72) also govern the possession, handling, storage, and transportation of radioactive materials from a nuclear power plant. **The State of California is preempted from imposing upon the operators**

any regulatory requirements concerning radiation hazards and nuclear safety. In <u>Pacific Gas</u> and <u>Electric Company v. State Energy Commission</u>, 461 U.S. 190, 103 S.Ct. 1713 (1983), the U.S. Supreme Court held that the federal government has preempted the entire field of "...radiological safety aspects involved in the construction and operation of a nuclear plant, but that the states retain their traditional responsibility in the field of regulating electrical utilities for determining questions of need, reliability, costs and other related state concerns."

The possession, handling, storage, and transportation of spent nuclear fuel similarly are precluded from state regulation. The applicants' SONGS 2 and 3 operating licenses require them to comply with all NRC regulations that apply to the operation of both units, including the possession, use, and storage of spent nuclear fuel. The applicants will control and monitor radioactive releases from the proposed project using the same programs and procedures currently implemented for the commercial operation of the units.

On February 15, 2000, the Commission approved CDP E-00-001, authorizing the demolition of the structures comprising SONGS Unit 1 and the construction of the SONGS 1 spent fuel storage facility (19 fuel storage modules) that the applicants will undertake in connection with the decommissioning of Unit 1. The proposed project will be constructed adjacent to and integrated into the SONGS 1 storage facility, adding 104 fuel storage modules to house SONGS 2 and 3 spent fuel (Exhibit 3).

Project Purpose

According to the applicants, additional storage capacity is necessary to store SONGS 2 and 3 spent fuel until their NRC operating licenses expire in 2022. The SONGS 2 and 3 spent fuel storage pools currently provide the capacity to store all fuel that will be used by both units through roughly 2007. The applicants are proposing dry storage, as opposed to a new pool storage facility, because the method is more economical and it places the fuel into containers that can be removed from the SONGS site by the Department of Energy when its permanent repository becomes available. Some fuel currently stored in water-filled pools will be transferred to the proposed storage facility until the U.S. Department of Energy (DOE), under obligation pursuant to the Nuclear Waste Policy Act of 1982, accepts the fuel for final disposal at a federal repository. The applicants will continue to use the existing SONGS 2 and 3 pool spent fuel storage facility. Spent fuel will be stored in these pools for a minimum of five years before it is transferred to dry storage.

According to the applicants, the DOE does not expect to start accepting SONGS 2 and 3 spent fuel or spent fuel from any U.S commercial nuclear power plant until 2010, at the earliest. Until then, the applicants are required by NRC regulations to safely monitor and maintain the SONGS 2 and 3 fuel.

Temporary Spent Nuclear Fuel Storage Facility

As stated above, until the U.S. Department of Energy accepts SONGS spent fuel for final disposal at a federal repository, the applicants are required by NRC regulations and their operating licenses to safely store and maintain it. The proposed project, an "Independent Spent Fuel Storage Installation" (ISFSI) is comprised of an array of concrete fuel storage modules (FSMs) located on a reinforced concrete pad. A stainless steel canister containing the spent fuel assemblies is secured inside the FSMs. The proposed project will be located within the existing Unit 1 boundaries on a generally flat area at an approximate elevation of 20 feet above sea level. It will be a minimum of 180 feet away from the beach/seawall and a minimum of 150 feet from the slopes surrounding the plant.

Approximately 104 steel-reinforced FSMs that will be placed on top of three steel-reinforced concrete pads, covering an approximate area of 25,550 square feet (Exhibit 2). The concrete pads will be a minimum of three feet thick (with the top being at the existing grade elevation) and will be approximately 43 feet wide and long enough to accommodate the module array. It will contain 7/8" diameter reinforcing bar (rebar) spaced on 12" centers running the length of the pad (top and bottom) and 1-1/8" diameter rebar spaced on 12" centers across the width of the pad. The minimum compressive strength of concrete is 4000 lbs./inch². The pad will be designed in accordance with the requirements of American Concrete Institute (ACI-349), "Code Requirements for Nuclear Safety Related Concrete Structures".

A FSM is shaped like a rectangular box and will be no more than 22 feet in height above the existing grade by 9 feet wide and 23 feet long. The FSMs are constructed of reinforced concrete and weigh over 400,000 lbs. each. Generally, rebar within the FSM will range in size from ½" to 1" in diameter with spacing ranging from 6" to 18". The FSMs are tied together in arrays with a combination of 1.5" bolts and 1" rebar. The minimum compressive strength of concrete is 5000 lbs./inch². The design and construction of the FSMs will be in accordance with ACI-349 and ACI-318, "Building Code Requirements for Reinforced Concrete".

Each FSM will house a NRC-licensed steel cask or canister that may contain up to 24 fuel assemblies. A fuel assembly consists of 236 zircalloy metal tubes approximately 12.8 feet long and 3/8" in diameter, in which ceramic uranium dioxide fuel pellets are placed. Known as fuel pins, the tubes are completely sealed with welded end plugs. Each fuel assembly has an overall length of about 15 feet and weighs approximately 1,500 lbs.

As indicated above, the proposed project will consist of three separate reinforced concrete pads, to be constructed in three separate phases. The first pad will be constructed adjacent to and integrated into the construction schedule of the SONGS 1 spent fuel storage facility. This phase is proposed to commence in November 2002. The second pad is anticipated to be constructed in 2008 after the SONGS 1 decommissioning is complete and as additional capacity is needed. The third pad is to be constructed sometime between 2011 and 2015 as the need arises.

The proposed fuel storage facility will be constructed within the existing, developed SONGS 1 site (Exhibit 3). The construction process will involve: (1) minor grading without breaking new ground; (2) placing the flat, reinforced concrete pad at ground level; (3) installing a chain-link

security fence, perimeter lighting, and cameras and; (4) lifting and setting the free-standing spent FSMs, to be fabricated offsite, on the pad. This work will involve customary grading equipment (such as a front-end loader and a compaction roller) and concrete construction equipment (such as forms, concrete tooling, and a mobile crane). Concrete will be delivered pre-mixed from local suppliers. Construction activities are scheduled to be performed during daylight hours. However, the applicants state that some tasks, completion of which cannot be delayed, such as a large concrete pour or finishing, could occasionally continue until after daylight hours.

The entire facility will be designed and constructed in accordance with NRC regulations (10 C.F.R. Part 72, Subpart K, "General License for Storage of Spent Fuel at Power Reactor Sites," as published in the Federal Register on July 18, 1990, 55 FR 29191) and the SONGS 2 and 3 operating licenses. The applicants maintain that the proposed project will be undertaken in accordance with the existing programs that implement and comply with NRC and Occupational Safety and Health Administration regulations. Existing lighting, telephone, and drainage infrastructure may be modified to accommodate the storage facility. However, the project will not change the existing drainage pattern from the site. All liquid discharges from the construction project will be regulated under the current SONGS 1 National Pollution Discharge Elimination System (NPDES) permit. There will be no liquid discharges or gaseous emissions from the storage facility.

4.2 PRIOR COMMISSION APPROVALS

In 1974, the Commission conditionally approved the construction of SONGS Units 2 and 3 (6-81-330). In 1991, the Commission further conditioned the same permit to require the applicants to implement a compensatory mitigation program. In 1997, the Commission, among other things, approved an amendment (6-81-330-A) to the SONGS 2 and 3 permit to amend the condition that required mitigation for adverse impacts to the marine environment caused by SONGS Units 2 and 3.

On February 15, 2000, the Commission approved coastal development permit E-00-001 authorizing Southern California Edison and San Diego Gas and Electric Company to decommission Unit 1 and construct a temporary spent fuel storage facility for Unit 1. The facility, slated for construction in November 2002, will consist of 19 fuel storage modules and cover an area approximately 4067 sq. ft. and reach 38 feet high.

4.3 OTHER AGENCY APPROVALS

U.S. Nuclear Regulatory Commission

The U.S. Nuclear Regulatory Commission (NRC) has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. The applicants are required to possess, use, and store radioactive waste streams in accordance with federal regulations (*e.g.*, 10 CFR Parts 20, 50, and 72) and their SONGS 2 and 3 NRC Operating License. NRC regulations allow licensees to store spent nuclear fuel either in a wet (pool storage) or dry (cask storage) method. However, they require an applicant to obtain

either a specific or seek coverage under a general license¹. Under a specific licensing process, the NRC conducts site-specific review of the proposed storage site. A general license allows persons authorized to possess or operate nuclear power plants to contract with an NRC-approved supplier of spent fuel storage casks. The supplier has the obligation to obtain NRC approval (*i.e.*, a Certificate of Compliance) of its casks pursuant to 10 C.F.R. 72, Subpart L.

In a letter dated October 4, 2000 to the NRC, the applicants informed the NRC that they will pursue a general license and that they have contracted with Transnuclear West Inc. to furnish storage casks. Transnuclear West Inc. submitted an application for a Certificate of Compliance (COC) to the NRC on September 29, 2000. A COC expires 20 years after the date that the cask is first used by the general licensee to store spent fuel, unless the cask's COC is renewed.

In order to seek coverage under a general license, the applicants are required to comply with the general license conditions pursuant to 10 C.F.R. 72.212 and others as indicated in 10 C.F.R. 72.13(c). Among other requirements, the former section requires the applicants to:

- 1. Formally notify the NRC at least 90 days prior to the initial storage of spent fuel.
- 2. Register use of each cask with the NRC no later than 30 days after using that cask to store spent fuel.
- 3. Perform written evaluations, prior to use, that establish that conditions set forth in the COC have been met and cask storage pads and areas have been designed to adequately support the statis load of the stored casks.
- 4. Review the Safety Analysis Report (SAR) referenced in the Certificate of Compliance and the related NRC Safety Evaluation Report, prior to use of the general license, to determine whether or not the reactor site parameters, including analyses of earthquake intensity and tornado missiles, are enveloped by the cask design bases considered in these reports.
- 5. Protect the spent fuel against the design basis threat of radiological sabotage in accordance with the same provisions and requirements as are set forth in the licensee's physical security plan.
- 6. Review the reactor emergency plan, quality assurance program, training program, and radiation protection program to determine if their effectiveness is decreased and, if so, prepare the necessary changes and seek and obtain the necessary approvals.

Additionally, 10 C.F.R 72.122 specifies overall requirements the proposed project must meet. Major requirements include:

¹ In issuing 10 C.F.R. 72.210, a general license for the storage of spent fuel in an independent spent fuel storage installation was effectively granted to persons authorized to possess or operate nuclear power reactors. Applicants wishing to seek coverage under this license must comply with the general license conditions pursuant to 10 C.F.R. 72.212 and others as indicated in 10 C.F.R 72.13(c).

- (a) *Quality Standards*. Structures, systems, and components important to safety must be designed, fabricated, erected, and tested to quality standards commensurate with the importance to safety of the function to be performed.
- (b) Protection against environmental conditions and natural phenomena.
 - (1) Structures, systems, and components important to safety must be designed to accommodate the effects of, and to be compatible with, site characteristics and environmental conditions associated with normal operation, maintenance, and testing of the ISFSI [independent spent fuel storage installation] or MRS [monitored retrievable storage installation] and to withstand postulated accidents.
 - (2) Structures, systems, and components important to safety must be designed to withstand the effects of natural phenomena such as earthquakes, tornadoes, lighting, hurricanes, floods, tsunami, and seiches, without impairing their capability to perform safety functions. The design bases for these structures, systems, and components must reflect:
 - (i) Appropriate consideration of the most severe of the natural phenomena reported for the site and surrounding area, with appropriate margins to take into account the limitations of the data and the period of time in which the data have accumulated, and
 - (ii) Appropriate combinations of the effects of normal and accident conditions and the effects of natural phenomena. The ISFSI or MRS should also be designed to prevent massive collapse of building structures or the dropping of heavy objects as a result of building structural failure on the spent fuel or high-level radioactive waste or on to structures, systems, and components important to safety.
 - (3) Capability must be provided for determining the intensity of natural phenomena that may occur for comparison with design bases of structures, systems, and components important to safety.
- (c) Protection against fires and explosions. Structures, systems, and components important to safety must be designed and located so that they can continue to perform their safety functions effectively under credible fire and explosion exposure conditions. Noncombustible and heat-resistant materials must be used wherever practical throughout the ISFSI or MRS, particularly in locations vital to the control of radioactive materials and to the maintenance of safety control functions. Explosion and fire detection, alarm, and suppression systems shall be designed and provided with sufficient capacity and capability to minimize the adverse effects of fires and explosions on structures, systems, and components important to safety. The design of the ISFSI or MRS must include provisions to protect against adverse effects that might result from either the operation or the failure of the fire suppression system.

. . .

- (e) *Proximity of sites*. An ISFSI or MRS located near other nuclear facilities must be designed and operated to ensure that the cumulative effects of their combined operations will not constitute an unreasonable risk to the health and safety of the public.
- (g) *Emergency capability*. Structures, systems, and components important to safety must be designed for emergencies. The design must provide for accessibility to the equipment of onsite and available offsite emergency facilities and services such as hospitals, fire and police departments, ambulance service, and other emergency agencies.
- (h) Confinement barriers and systems.
 - (1) The spent fuel cladding must be protected during storage against degradation that leads to gross ruptures or the fuel must be otherwise confined such that degradation of the fuel during storage will not pose operational safety problems with respect to its removal from storage. This may be accomplished by canning of consolidated fuel rods or unconsolidated assemblies or other means as appropriate.

. . .

- (3) Ventilation systems and off-gas systems must be provided where necessary to ensure the confinement of airborne radioactive particulate materials during normal or off-normal conditions.
- (4) Storage confinement systems must have the capability for continuous monitoring in a manner such that the licensee will be able to determine when corrective action needs to be taken to maintain safe storage conditions. For dry spent fuel storage, periodic monitoring is sufficient provided that periodic monitoring is consistent with the dry spent fuel storage cask design requirements. The monitoring period must be based upon the spent fuel storage cask design requirements.
- (5) The high-level radioactive waste must be packaged in a manner that allows handling and retrievability without the release of radioactive materials to the environment or radiation exposures in excess of part 20 limits. The package must be designed to confine the high-level radioactive waste for the duration of the license.

Other requirements the proposed project must comply with specify criteria for nuclear criticality safety (10 C.F.R. 124), criteria for radiological protection (10 C.F.R. 126), quality assurance (10 C.F.R. 140-176), and operator requirements (10 C.F.R. 190, 194).

Construction of the SONGS 2 and 3 dry storage facility will not require further NRC approval. NRC staff may, however, inspect the construction of the fuel storage modules and the process of loading and moving the spent fuel to the storage facility.

San Diego Air Pollution Control District (APCD)

The San Diego Air Pollution Control District (APCD) has permit authority under the California Clean Air Act (CCAA) over direct emission sources in the project area. The APCD has not established California Environmental Quality Act emission thresholds for construction activity and instead relies on district rules to determine whether permit requirements are triggered by construction-related emissions.

Since the proposed project's emission sources will be construction equipment brought on the site temporarily, the APCD will require permits, if necessary, for these individual sources of emissions. The applicants will either obtain or contractually require vendors supplying the equipment to obtain necessary permits from the APCD. Mobile construction equipment (e.g., cranes) used in connection with the project may be permit exempt, as determined by the APCD.

4.4 COASTAL ACT ISSUES

4.4.1 Geologic Hazards

Section 30253 of the Coastal Act states, in part, that:

New development shall:

- (1) Minimize risks to life and property in areas of high geologic, flood, and fire hazard.
- (2) Assure stability and structural integrity, and neither create nor contribute significantly to erosion, geologic instability, or destruction of the site or surrounding area or in any way require the construction of protective devices that would substantially alter natural landforms along bluffs and cliffs.

. . .

The San Onofre bluffs, site of the SONGS facility, are an area of high geologic, flood and fire hazard. Accordingly, the Commission's Senior Geologist has reviewed the documents submitted by both the applicants and the opponents to the project, and has conducted his own literature research. This section (4.4.1) contains his conclusions, which the Commission hereby incorporates as findings.

As described above, in section 4.1, the Commission is proscribed from applying section 30253—or any section of the California Coastal Act—to issues related to nuclear or radiation safety. Nevertheless, proposed development must assure geologic stability in order to conform to the Coastal Act. The analysis that follows relates to the safety of the proposed development from geologic hazard; it does not address the consequence of structural failure in terms of nuclear safety. Such consequences are under the jurisdiction of the Nuclear Regulatory Commission (NRC). The findings in this section relate only to issues of geologic stability pursuant to the California Coastal Act.

Applicants: Southern California Edison et al.

Page 12

The Commission has identified the following geologic issues that must be considered to find that the proposed development will minimize risk to life and property (including the proposed development), and to assure stability and structural integrity at the site: seismic safety (including ground shaking, fault rupture, liquefaction, and tsunami runup), bearing capacity of the foundation elements, safety from coastal bluff retreat and shoreline erosion, and stability of slopes adjacent to the proposed development.

4.4.1.1. Geologic Setting

The SONGS site lies in the Peninsular Ranges geomorphic province of southern California. Bedrock at the site is the San Mateo Formation, a dense well lithified sandstone of Pliocene to Pleistocene age. Borings indicate that this formation extends to at least a depth of 900 feet below grade at the site. This bedrock unit is overlain by a series of marine and nonmarine terrace deposits approximately 50 feet thick, which have been dated by correlation with similar deposits containing mollusk fossils that are well dated at 80,000 to 180,000 years old (Fugro, 1975a; Fugro, 1975b). The bedrock at the SONGS site is nearly flat-lying, dipping 10-15 degrees to the northeast (Ehlig, 1977).

At the SONGS facility itself, the terrace deposits and the upper 10-20 feet of the San Mateo Formation have been removed by grading, and the finished grade of the facility is set well below the top of the coastal cliffs at an elevation of approximately 20 feet MLLW. The excavated material was placed on the beach as sand nourishment, greatly increasing the width of the beach in this area. Much of this material has now been removed by longshore drift, but a narrow beach still exists seaward of the facility.

The Cristianitos fault, an apparently inactive low-angle normal fault (Shlemon, 1987), lies south and east of the site, intersecting the seacliff approximately one mile south of the SONGS facility. South of the fault, bedrock consists of the Miocene Monterey Formation, which is underlain by the San Onofre breccia, well exposed in the San Onofre hills to the east. The marine and nonmarine terrace deposits overlie the Monterey Formation as well as the San Mateo Formation. In addition to the Cristianitos fault, which will be described in more detail below, four minor faults have been mapped on the northwest flank of the San Onofre hills to the east of the site. None show evidence of movement during the past two million years (U.S. Nuclear Regulatory Commission, 1981). Several sets of shears in the San Mateo Formation were uncovered during excavation for SONGS Units 2 and 3. These shears show displacements of 3 to 6 inches, but do not offset overlying terrace deposits (Fugro, 1974a; Fugro, 1974b) (Fugro, 1976), and the NRC concluded that they do not represent recent faulting at the site (U.S. Nuclear Regulatory Commission, 1975).

More distant geologic structures include the Newport-Inglewood-Rose Canyon fault zone (variously referred to during NRC review as the "Offshore Zone of Deformation," or the "Southern California Offshore Zone of Deformation"), which passes approximately 8 km offshore. Further offshore, in the region known as the California Borderland, lie several poorly understood northwest-southeast trending strike-slip and/or thrust faults including the Coronado Bank Fault Zone, San Diego Trough Fault Zone, Thirtymile Bank Fault Zone, and Oceanside Thrust. Onshore, the northwest-southeast trending Elsinore, San Jacinto, and San Andreas Fault Zones pass 38, 73, and 93 km from the site, respectively. Despite the proximity to these active faults, the area is one

of the most seismically quiet areas in coastal California, and historically has experienced severe ground shaking relatively rarely.

4.4.1.2. Earthquakes and seismic hazards

Like most of coastal California, the SONGS site lies in an area subject to earthquakes. The site lies approximately 8 km from the Newport-Inglewood-Rose Canyon fault system, 38 km from the Elsinore Fault, 73 km from the San Jacinto Fault, and 93 km from the San Andreas Fault, all of which have been designated "active" (evidence of movement in the past 11,000 years) by the California Division of Mines and Geology (Jennings, 1994). Several relatively nearby offshore faults, including the Coronado Bank Fault Zone, the San Diego Trough Fault Zone, the Thirty-Mile Bank Fault, and the Oceanside Thrust also may be active faults by this definition. Nevertheless, seismicity here has historically been relatively quiet compared to much of the rest of southern California (Exhibit 4), probably because of the relatively great distance of the San Andreas fault, which accommodates most of the plate motion in the area, and the relatively low slip rates of the closer faults (Peterson et al., 1996). A magnitude (M_L) 5.4 earthquake, associated with an unusually large swarm of aftershocks, occurred near the offshore San Diego Trough Fault Zone in 1986, but no other moderate or large (> M_w 5.0) earthquake has occurred within 50 km in historic time (Exhibit 4).

Seismic hazards at the site include ground shaking, surface rupture, liquefaction, slope instability, and tsunami runup. All of these issues are addressed in these findings, but ground shaking deserves special attention as it is the seismic hazard most likely to affect the proposed development. To fully discuss the ground shaking hazard, an understanding of the means geologists use to quantify ground shaking is necessary.

Ground shaking

Many different measures have been used over the years to assess earthquake magnitude. The familiar Richter, or local, magnitude (M_L) is based on the ground shaking observed on a particular type of seismograph that is most sensitive to short period (0.8 second) seismic waves. These waves die out with distance, and so this measure is inappropriate when applied over long distances (> ~500 km) to measure distant earthquakes. Moreover, for large earthquakes, the Richter magnitude "saturates," and fails to accurately reflect differences between large earthquakes of different magnitudes. The surface wave magnitude (M_S) was developed to measure shaking of long period (20 second) waves, and is more suited to larger earthquakes. This scale, like its counterpart the body wave magnitude (M_B) also saturates in large earthquakes and, like the Richter magnitude, is based solely on ground shaking, not the amount of energy released by an earthquake. Currently, most seismologists prefer the moment magnitude (M_W) for measuring large earthquakes. This measure is based on the strength of the rocks, the area of fault rupture, and the amount of slip during an earthquake, and is a better measure of the amount of energy released by an earthquake.

An earthquake of a given magnitude will produce different levels of ground shaking at different locations, depending on the distance of the location from the earthquake hypocenter, the nature of the soil or rock between the location and the earthquake, and soil and rock conditions at the site.

Applicants: Southern California Edison et al.

Page 14

The level of shaking is expressed by a term called "intensity," and is quantified by the Modified Mercalli Index, whereby intensities ranging from I (not felt) through XII (near total destruction) are assigned based on the level of damage sustained by structures. Better quantification of the level of shaking also is possible; and the standard measure is peak ground acceleration (PGA), usually expressed as a fraction of the acceleration due to gravity (9.81 m/s², or 1.0 g). Peak ground acceleration is typically measured in horizontal and vertical directions. It can be expressed deterministically ("a given earthquake can be expected to produce a peak horizontal ground accelerations at the site of X g"), or probabilistically ("given the seismic environment at the site, there is a 10% chance that a peak ground acceleration of X g will be exceeded in 50 years"). The current trend is to express seismic risk in probabilistic terms. The State of California has defined ground accelerations with a 10% chance of exceedance in 50 years as corresponding to the "maximum probable earthquake" for the site. Ground shaking with a 10% chance of exceedance in 100 years is defined as the "maximum credible earthquake." Peak ground accelerations depend not only on the intensity of the causative earthquake and the distance of the site from the hypocenter of the earthquake, but also on site characteristics. Most important is the depth and firmness of the soil and/or bedrock underlying the site. All of these parameters are evaluated in producing a seismic shaking hazard assessment of a site.

In evaluating the response of structures to ground shaking, the frequency (cycles per second) of that shaking is important—higher frequency shaking is more damaging to smaller, more rigid structures, whereas lower frequency shaking is more damaging to larger, or more flexible structures. The proposed ISFSI facility fits into the latter category. Different ground acceleration values apply to seismic waves with different frequencies. The inverse of the frequency of a seismic wave is its period. Thus, an earthquake with a peak ground acceleration of 0.7 g may have a peak "spectral acceleration" (SA) of 1.1 g for waves of 0.3 second period, but only 0.5 g for waves with periods of 1 second. A typical earthquake produces seismic waves with many different periods, and a plot of spectral accelerations for an earthquake shows the ground accelerations for waves of all periods. In addition, the duration of shaking appears to be important in determining the amount of damage caused by ground shaking. The duration of shaking correlates reasonably well with earthquake magnitude, but there are no currently accepted means of estimating the expected duration of ground shaking from a given earthquake.

The SONGS Seismic Design Criteria

The applicant maintains that the seismic safety of the site has been assured through review by the U.S. Nuclear Regulatory Commission, most recently the licensing review for Units 2 and 3. Accordingly, it is appropriate to evaluate the SONGS seismic design criteria when considering the safety of the proposed project, which would be located immediately adjacent to Units 2 and 3 on the site of the decommissioned Unit 1.

The recently-released seismic shaking hazard map of California (Peterson et al., 1999) portrays the San Onofre area as a region of "low" seismic shaking potential, with a 10% chance of exceeding approximately 0.3 g in 50 years. For comparison, the Big Sur coast is the only other part of coastal California having a comparably low ground shaking potential according to this assessment. The U.S. Geologic Survey's latitude-longitude earthquake ground motion hazard look-up page (http://geohazards.cr.usgs.gov/eqint/html/lookup.shtml) similarly reports an expected peak ground acceleration of 0.32 g (10% chance of exceedance in 50 years). The probabilistic peak

ground accelerations and spectral accelerations for the San Onofre area, assuming firm bedrock conditions, are as follows (determined from the USGS lookup page):

	10% in 50 yr	5% in 50 yr	2% in 50 yr
PGA	0.32 g	0.47 g	0.67 g
0.2 sec SA	0.74	1.12	1.50
0.3 sec SA	0.64	1.06	1.36
1.0 sec SA	0.28	0.38	0.54

This assessment, however, is based only on current understanding of the likelihood of earthquakes of varying intensities on nearby faults. A deterministic study undertaken at the time of the licensing permit application for SONGS Units 2 and 3 (U.S. Nuclear Regulatory Commission, 1981) identified an earthquake on the Newport-Inglewood-Rose Canyon fault system, centered on the portion of the fault nearest to the SONGS site, to be the seismic event with the greatest potential ground shaking for the SONGS site. Other faults, such as the San Andreas Fault, although capable of producing larger earthquakes than the Newport-Inglewood-Rose Canyon fault system, are so far distant from the site that ground shaking would be less than an earthquake on the Newport-Inglewood-Rose Canyon fault system. Because the applicant refers to this assessment to assure the stability of the proposed project, analysis of how this assessment was performed follows.

The 1981 NRC document reviewed several methods put forth by the applicant to arrive at an estimate for the expected magnitude of a design basis earthquake (the "safe shutdown earthquake" of the NRC). One method is the evaluation of historical seismicity on the Newport-Inglewood-Rose Canyon fault system. Three historic earthquakes are known on this system, or its possible extension into Baja California. Only the most recent, which occurred on March 11, 1933, can be accurately assigned a magnitude. That earthquake, the damaging Long Beach earthquake, had a magnitude (M_W) of 6.4 (SCEC, 2001; the NRC (1981) reports both M_S and M_L of 6.3). The locations of the two other earthquakes are not accurately known, but may be related to this system. The first occurred near San Diego on November 22, 1800, and may have had a magnitude of about 6.5 (U.S. Nuclear Regulatory Commission, 1981). The other earthquake, the December 8, 1812 San Juan Capistrano earthquake, likely actually occurred on the San Andreas Fault (SCEC, 2001) and may have had a moment magnitude of about 7.5. The NRC assumed in 1981 that the earthquake was centered on San Juan Capistrano, placing it on the Newport-Inglewood-Rose Canyon fault, and estimated its magnitude as about 6.5 (Toppozada et al., 1979). An 1892 earthquake in Baja California (Laguna Salada earthquake), with an estimated magnitude of 6.9 (M_S; Toppozada et al., 1979; $M_W = 7.0$ according to SCEC, 2001) probably is not related to the Newport-Inglewood-Rose Canyon fault system (Gastil et al., 1979). From these data, the NRC concluded that "the largest historical earthquakes which have an impact upon the assessment of the maximum earthquake on the OZD [the Newport-Inglewood-Rose Canyon fault system] are $M_S = 6.3$, 6.5, and 6.5 in southern coastal California and possibly $M_S = 6.8$ [sic] in Baja California." Earthquakes in southern California that have taken place since the NRC report was published in 1981, including the 1992 Landers ($M_W = 7.3$; SCEC, 2001), 1994 Northridge ($M_W = 6.7$; SCEC, 2001), and 1999 Hector Mine ($M_W = 7.1$; SCEC, 2001) earthquakes were not associated with the Newport-

Applicants: Southern California Edison et al.

Page 16

Inglewood-Rose Canyon fault system. Shaking from each of these events was minimal (< 0.1g) at the SONGS site (Collins, 1997).

A second approach to estimating the maximum earthquake likely to be produced by movement along a fault is based on estimates of fault parameters, especially the long-term rate of slip on the fault, estimates of the length of the fault that would rupture during an earthquake, and the amount of displacement that would occur during an earthquake. David Slemmons, consultant to the NRC, put forth over ten different estimates for the maximum magnitude of an earthquake on the Newport-Inglewood-Rose Canyon fault system using various estimates of these parameters. His analysis resulted in estimates of M_S ranging from 6.6 to 7.3 (U.S. Nuclear Regulatory Commission, 1981). These estimates used a long-term slip rate of 0.5 mm/year, and rupture lengths of up to 44 km (22 percent of the 200-km long system). Based on its own review, and a limited review by the U.S. Geological Survey, the NRC concluded "that $M_S = 7.0$ is a reasonable, yet conservative estimate of maximum earthquake potential based upon fault parameter evaluation" (U.S. Nuclear Regulatory Commission, 1981).

Estimating the amount of ground shaking expected at a particular location from a nearby earthquake is challenging. At the time of the licensing of SONGS 2 and 3, the applicant combined empirical data from recent earthquakes (especially the 1979 Imperial Valley earthquake) and theoretical models to estimate the ground shaking expected at the SONGS site as a result of the design basis earthquake ($M_S = 7.0$ at 8 km from the site). The theoretical estimate was arrived at by 1) characterizing the nature of the fault slip in terms of fault type, rupture velocity, dynamic stress release, and duration of slip; 2) propagating the energy released in (1) through the earth structure between the fault and the site; and 3) calculating actual ground motion by mathematically combining (1) and (2). The NRC and its consultants reviewed this procedure, and required some modifications to the model. The applicants responded with a model that assumes a rupture distance of 40 km, maximally focused at the site, with a fault offset of 130 cm and a rupture velocity equal to 90% of the shear wave velocity. The mean spectra has a peak acceleration of 0.31 g. After comparison with empirical models, and in order to build in conservatism for inaccuracies in the model, the NRC approved the calculated spectra multiplied by a factor of about 2. The NRC approved spectra thus is pegged at a high-frequency peak acceleration of 0.67 g (Exhibit 5) (U.S. Nuclear Regulatory Commission, 1981). Also shown in exhibit 5 are spectral accelerations expected at the site from the design-basis earthquake according to several newer models for the attenuation of seismic energy with distance.

The approach outlined above is deterministic in nature: a design basis earthquake was established, and that earthquake was used to calculate expected ground acceleration. In 1995 a probabilistic study was undertaken. Three independent sets of consultants contributed to this product: Geomatrix (1994; 1995a; 1995b) determined the seismic source models; Woodward-Clyde (1995a; 1995b) determined the seismic wave propagation (attenuation) models; and Risk Engineering (1995) integrated these results and performed hazard assessment. The results represent the annual frequency of exceedance of various ground motions at SONGS, shown as a family of seismic hazard curves and as seismic spectra corresponding to the "safe shutdown earthquake," (annual probability of occurrence of 0.00014, or recurrence interval of 7,143 years). This spectra peaks at somewhat higher accelerations than the deterministic spectra (Exhibit 6).

Recent studies and implications to seismic potential at the site

Some opponents to the proposed project indicate that, as a result of research undertaken since the licensing of SONGS 2 and 3, new information is available on the geologic environment offshore of the SONGS site that indicate that the design basis earthquake ($M_S = 7.0$ at 8 km; with highfrequency ground accelerations pegged at 0.67 g) may underestimate the seismic risk at the site. This is not the first time that the seismic safety of the SONGS facility has been formally challenged. On September 22, 1996, Stephen Dwyer, a geologist from southern California, petitioned the NRC to shut down the SONGS facility "as soon as possible" pending a complete review of the "new seismic risk." Mr. Dwyer asserted that the design criteria are "fatally flawed" on the basis of new information gathered at the Landers and Northridge earthquakes. In particular, he cited 1) ground accelerations as high as 1.8 g that were recorded during the $M_W = 6.7$ Northridge earthquake; 2) horizontal offsets of up to 20 feet in the Landers earthquake, and 3) the fact that the Northridge fault was a "blind thrust and not mapped or assessed." These issues were addressed by the NRC in "Director's Decision-97-23" (Collins, 1997). The high ground acceleration associated with the Northridge earthquake appears to be due to characteristics (still poorly understood) of one particular instrumented site (Rial, 1996). Nevertheless, as the record from strong motion instrumentation improves, geologists are obtaining more and more records showing high ground accelerations from even modest earthquakes (e.g., 0.48 g from the M_w 5.0 Napa earthquake of 3 September 2000; L. Jones, USGS, pers. comm., 2001). What is equally or more important than ground acceleration, however, is the spectral frequency at which the acceleration occurs and the duration of shaking. Most of these high acceleration values are of very short duration and occur at high spectral frequencies. The horizontal offset at the Landers earthquake is not germane to an earthquake on the Newport-Inglewood-Rose Canyon fault system as the fault dynamics are very different in the two cases. The NRC similarly dismissed the fact that the Northridge fault was a blind thrust as not being germane to the SONGS site in that the Newport-Inglewood-Rose Canyon system is known to be a strike-slip fault, not a blind thrust (Collins, 1997). There is, however, evidence (presented below) that a thrust component may contribute to this fault system. To summarize, the NRC found in 1997 that there was no basis for the Dwyer petition, that the design basis earthquake was adequate, and that the SONGS seismic design criteria exceed the expected seismic spectra from such an earthquake.

Dr. Mark Legg has expressed several concerns related to the proposed project (Exhibit 7). Like Mr. Dwyers, he is concerned with information gained by seismologists since the SONGS Units 2 and 3 licensing review:

Newer attenuation relations based upon recent large earthquake activity including the 1989 Loma Prieta, California; 1992 Landers, California; 1999 Chi-Chi, Taiwan; 1999 Izmit, Turkey; and 1995 Kobe, Japan, and moderate earthquakes including the 1994 Northridge, California; 1987 Whittier Narrows, California; 1983 Coalinga, California; and 1984 Morgan Hill, California are more accurate in estimating ground motions than the relationships used for the Safety Evaluation conducted in the late 1970s (Abrahamson and Silva, 1997; Boore et al., 1997; Campbell, 1997; Sadigh et al., 1997).

This statement is true, and is in fact born out by similar data from even smaller earthquakes such as the 2000 Napa earthquake. However, as shown in Director's Decision 97-23 (Collins, 1997), the

SONGS design spectra exceeds the spectral accelerations expected at the site from the design-basis earthquake according to the attenuation models cited by Dr. Legg (Exhibit 5). Even these attenuation models, as well as that by Spudich and others (1997), failed to predict the 0.48 g acceleration measured from the Napa earthquake of 2000—by a factor of four (Miranda and Aslani, 2001). Nevertheless, irrespective of the attenuation models adopted during the licensing review, the design spectra for the ISFSI facility is sufficiently conservative to allow for much larger ground accelerations than might be predicted by the newer attenuation models.

Dr. Legg also points out in his communication to Commission staff (Exhibit 7) that:

it is now recognized that major detachment fault systems in the region are reactivated as thrust faults, some blind (not reaching the surface). The major Oceanside detachment/thrust system underlies the San Onofre Nuclear Generating Station (SONGS). Consequently, large thrust or oblique-reverse earthquakes on this system may generate shaking levels in excess of the design level of SONGS units 2 and 3 (Bohannon et al., 1990; Bohannon and Geist, 1998; Crouch and Suppe, 1993; Grant et al., 1999; Legg et al., 1992; Nicholson et al., 1993; Rivero et al., 2000).

He goes on to indicate that:

...the reverse fault character of microearthquakes recorded along the Cristianitos fault trend in the mid-1970s and reactivation of minor faulting uncovered during site excavations is consistent with overall reactivation of ancient normal fault structures by a new stress regime involving northeast-directed shortening or transpression. This assertion has now been confirmed by recent geologic studies in the neighboring offshore region...

and that, because of the dipping nature of these thrust faults, in an earthquake involving them

... the SONGS site would not be 5-7 km from the epicentral zone, but instead directly above the potential fault rupture plane. Estimation of strong motion should use an epicentral distance of zero (0).

The studies cited by Dr. Legg, as well as other studies, do suggest that a complex system of low-angle faults, which appear to be old normal faults (related to crustal extension) reactivated as thrust faults (related to crustal shortening) lie offshore of the SONGS site. The thrust character of these faults may be related to the bend in the Newport-Inglewood-Rose Canyon fault system offshore of Carlsbad. In this area Kuhn and others (Kuhn et al., 2000; Shlemon, 2000) have documented complex fault features that appear to be related to thrusting. It is probably significant that the 1986 Oceanside earthquake (M_L) 5.4, which was centered on one of these low-angle faults, showed a thrust fault mechanism.

Thus, there appears to be credible evidence that, in addition to the strike-slip faulting recognized at the time of the SONGS licensing review, thrust faults exist in the area offshore of the SONGS site which might interact with the Newport-Inglewood-Rose Canyon fault system in a complex way during an earthquake. If these faults are active or potentially active, the increase in potential fault rupture area has, at a minimum, the potential to increase the magnitude of an earthquake on the integrated fault system. Geologists' understanding of this area is rapidly evolving, and there are few constraints on the parameters needed to assess the increase in earthquake risk (such as slip rate on each of the potentially active faults, segmentation of the faults, and potential for cascading failure between fault segments). One of the few published estimates is that of Shaw and his

Applicants: Southern California Edison et al.

Page 19

students (Rivero et al., 2000), who hypothesize that the combined system may be capable of an earthquake ranging from M_W 7.1 to 7.6, depending on which sets of faults are involved in the earthquake (Exhibit 8). Shaw's tectonic model for the area is, however, quite controversial (Jones, USGS, pers. comm., 2001). Commission staff consulted with seismologists and geologists at the U.S. Geological Survey, California Division of Mines and Geology, California Seismic Safety Commission, within academia, and at private consulting firms. Although there was near unanimous recognition that there is an increased earthquake risk given our emerging understanding of the complexities of the region relative to a simple strike-slip model used in the SONGS seismic hazard assessments, no one could assess the potential ground shaking that might be expected at the SONGS site.

The Commission thus finds that there is credible reason to believe that the design basis earthquake approved by the NRC at the time of the licensing of SONGS 2 and 3—a magnitude 7.0 earthquake on the Newport-Inglewood-Rose Canyon fault system 8 km from the site, resulting in ground shaking with a high frequency component peaking at 0.67 g—may underestimate the seismic risk at the site. This does not mean that the facility is unsafe—although the design basis earthquake may have been undersized, the plant was engineered with very large margins of safety, and would very likely be able to attain a safe shutdown even given the larger ground accelerations that might occur during a much larger earthquake. Assessing the safety of the SONGS facility is not under consideration with this application. As will be shown, the seismic design of the proposed project, which *is* under consideration, so far exceeds the ground accelerations anticipated from the design basis earthquake that it is reasonable to believe that it will be safe from even a much larger earthquake whose focus is even closer than the design basis earthquake.

ISFSI seismic design

Exhibit 9 shows the horizontal (X and Y) and vertical seismic spectra for which the proposed project is designed, together with spectra corresponding to SONGS seismic design, derived from the design basis earthquake described above. Superimposed on each is the Commission staff's calculation for the maximum spectra that would be required at the site according to the Uniform Building Code (Seismic Source A, epicentral distance <2 km, soil profile type S_C). The spectra labeled "SONGS" is derived from the NRC-approved "free-field" spectra and takes into account the interaction of the proposed structure with ground motions, which tends to amplify shaking. The design spectra corresponds to NRC Regulatory Guide 1.60, "Design response spectra for seismic design of nuclear power plants." Comparison of the design spectra with the calculated spectra corresponding to the design basis earthquake show a very large factor of safety. The design spectra greatly exceeds that of the design basis earthquake at all frequencies. It is accordingly reasonable to conclude that even a much larger earthquake, a much lower epicentral distance, or both, will not produce ground shaking exceeding the design of the proposed project.

Accordingly, the Commission finds that the proposed project has been designed to assure, to the greatest extent feasible, seismic stability, consistent with section 30253 of the Coastal Act.

Page 20

Surface Rupture and the Cristianitos Fault

No active faults were found at the SONGS site despite concerted efforts during geologic studies related to construction and licensing permits before the NRC (Fugro, 1977; Shlemon, 1977; 1979). Several faults were encountered, but without exception they are truncated by the overlying marine terrace deposits, whose age has been established as approximately 120,000 years (1975a; Fugro, 1975b), thus indicating that there has been no movement on those faults since at least that time. Hence, the risk of surface rupture at the SONGS site is very low.

The largest fault near the SONGS site is the Cristianitos fault, which passes less than one mile south of the site (Exhibit 10). This fault, which appears to be a low-angle normal fault, is similarly overlain by undisturbed terrace deposits (Exhibit 11), indicating that there has been no movement on it for at least 120,000 years (Shlemon, 1987). Green and others (1979) did indicate that the fault may connect with the Newport-Inglewood-Rose Canyon system, based on limited seismic data. Despite this potential connection, and the occurrence of two small (magnitude 3.3 and 3.8) earthquakes that occurred near (but not on) the fault trace 30 km north of SONGS in January 1975, the NRC and its USGS consultants concluded that the Cristianitos fault is inactive (U.S. Nuclear Regulatory Commission, 1981). Without more compelling evidence to the contrary, the Commission concurs with this assessment.

Commission staff received a letter from Aladdin Masry, a geologist from Hemet, California, dated 26 June 2000 and originally addressed to "USGS" (Exhibit 12). In this letter, Mr. Masry states that a "recent visit to camp San Onofre indicated that the San Christianitos [sic] fault has moved and ruptures the ground." Mr. Masry goes on to express concern for the safety of the plant. Movement along a fault generally occurs through earthquakes. Movement sufficient to produce surface rupture should produce a substantial earthquake. Commission staff reviewed the earthquake database from the Southern California Earthquake Center for the period January 1998 through July 2000 and found no earthquake that could have been associated with movement of the Cristianitos fault. Commission staff visited the site on 10 January 2001, and found no evidence for surface rupture at the site. There has been recent landslide activity approximately ¼ mile south of the intersection of the Cristianitos fault and the sea cliff, and associated with the landslide are active ground fissures, some of them quite deep. It is possible that Mr. Masry mistook this activity for surface rupture of the Cristianitos fault. Fissures associated with landslides in the area have been previously mistaken for deep-seated faulting (Fugro, 1977).

Accordingly, the Commission finds that the stability of the site with respect to surface rupture can be assured, to the greatest extent feasible, consistent with section 30253 of the Coastal Act.

4.4.1.3. Liquefaction

As discussed below, under "bearing capacity," the SONGS site is underlain by dense sands of the San Mateo Formation. The upper terrace deposits which formerly overlaid the San Mateo formation were removed during construction of SONGS units 1, 2, and 3. Although the water table is very shallow at the site (+5 feet MSL; Southern California Edison Company, 1998), cyclic triaxial tests, field density tests, and very high blow counts during standard penetrometer tests show that liquefaction during the design basis earthquake should not occur. The minimum factor-

of-safety against liquefaction in the plant area was calculated at 1.5 to 2.0 (Southern California Edison Company, 1998). The NRC concurred with the applicant's assessment that these calculated factors-of-safety against liquefaction of the San Mateo Formation at the site, for the design basis earthquake loading, are ample (U.S. Nuclear Regulatory Commission, 1981).

The applicant submitted a geotechnical investigation (Southern California Edison Company, 1995) in which liquefaction at the proposed project site itself was specifically addressed. They used the empirical approach of Seed and others (1985) relating Standard Penetration Test (SPT) blow count data from sites that have experienced liquefaction and at sites that have not experienced liquefaction for specific cyclic stress ratios. Using empirical data appropriate to the site characteristics (design basis earthquake, percent fines in the San Mateo Formation), the SPT blow count data indicate that the sands will not liquefy during the design basis earthquake (Exhibit 13).

Several geologists working in southern California have identified features in the San Onofre-Carlsbad area that they interpret to be the results of liquefaction that has occurred at various times in recent geologic history (Franklin and Kuhn, 2000; Kuhn et al., 1996; Kuhn et al., 2000; Shlemon, 2000). These features, including sand dikes, lenses, and disturbed bedding, were also mentioned by Dr. Mark Legg in his communication with Commission staff (Exhibit 7). Because these features appear to disturb Native American middens (Kuhn et al., 2000), it can be inferred that some of them, at least, are younger than about 10,000 years old, and perhaps as young as 2000-3000 years. Some such features occur in areas where the only likely source for the sand injected into higher layers of the soil is well-consolidated sandstones of Eocene age (Franklin and Kuhn, 2000). Kuhn (1996; Kuhn et al., 2000) cites these features as evidence for very large earthquakes in the area in the past.

Although these features are suggestive, the Commission does not consider them indicative of a serious liquefaction hazard at the site of the proposed project. Liquefaction in sands as dense as those encountered at the SONGS site have not previously been documented in even very large earthquakes; it is far more common for unconsolidated sands or artificial fills to fail by liquefaction. While it is possible that an earthquake much larger than the design basis earthquake might be capable of causing liquefaction of the San Mateo formation sands, no estimates have been provided by any of the cited studies as to the required ground shaking needed to induce such cyclic stresses. In light of the high factor of safety evident on Exhibit 13, and without credible data to the contrary, the Commission finds that the applicant has adequately addressed the liquefaction hazard at the site.

Accordingly, the Commission finds that the stability of the site with respect to liquefaction can be assured, to the greatest extent feasible, consistent with section 30253 of the Coastal Act.

4.4.1.4. Tsunamis

Several studies have been undertaken to address the potential for tsunami runup at the SONGS site. The most recent are summarized in the Safety Evaluation Report prepared by the NRC at the time of licensing hearings for SONGS 2 and 3 (Southern California Edison Company, 1998; U.S. Nuclear Regulatory Commission, 1981). Both local- and distant-sourced tsunamis were considered; the local-source tsunami (resulting from a magnitude 7.5 earthquake occurring 8 km offshore along the Newport-Inglewood-Rose Canyon fault system) was specifically modeled by

Dr. Basil Wilson, consultant for Southern California Edison, at the time of original licensing review. By assuming that the vertical ground movement associated with this earthquake would be 7.1 feet, he calculated that a tsunami of 7.6 feet would result. By superimposing this tsunami on a 7-foot high tide (the 10% exceedance Spring high tide for the site) and a one-foot storm surge, the maximum "still" water level was found to be 15.6 feet MLLW. In its review, the NRC generally agreed with this model, arriving at a maximum still water level of 15.83 feet MLLW. In these calculations, the presence of the seawall was ignored.

The applicant submitted a geotechnical investigation (Southern California Edison Company, 1995) in which tsunami runup at the project site itself was specifically addressed. This evaluation made use of the tsunami calculations prepared for the SONGS 2 and 3 licensing application summarized above. Noting that the elevation of the proposed project's foundation pad is 20 feet MLLW, and the maximum still water level calculated by their consultant, the report notes that the foundation pad would be about 4.4 feet higher than proposed wave runup. To address the effects of breaking storm waves superimposed on this tsunami-generated still water runup, a wave uprush study used in the design of the seawall at the time of the SONGS Unit 1 design was applied. Again assuming that the seawall is not present, the wave would break at the riprap revetment protecting the walkway along the beach. The maximum breaking wave was found during the seawall study to be 8.8 feet high. If the seawall were not present, this wave would disperse as a wedge of water as it moved inland from the walkway. Volumetric calculations show that this wedge of water would fill the area between the riprap and the ISFSI site up to elevation 18.8 feet MLLW; 1.2 feet below the pad grade. The velocity of this wave would be low and the major impact to the site would be from flooding. Inundation of the pad itself would not harm either the pad or the casks (T. Yee, SCE, pers. comm., 2001).

For the initial examination of SONGS Units 2 &3, the only tsunamis considered were those generated by earthquakes. Several recent tsunamis have been generated by massive submarine landslides (e.g., Kulikov et al., 1996; Rabinovich et al., 1999, Tappin et al., 2001[in press]). These tsunamis are often localized, but very large events. There have been a number of studies in recent years which appear to demonstrate that massive underwater landslides have occurred off the southern California coast, particularly in Santa Monica Bay, in the recent geologic past. As described by Dr. Legg in his letter (Exhibit 7):

It is likely that large underwater landslides would be triggered by severe earthquakes, and the possibility of both tectonic displacement and landslide inducement of tsunamis exists. Maximum expected run-up maps for locally generated tsunami are currently being prepared for coastal San Diego County (Bohannon and Gardner, 2001 (in press); Field and Edwards, 1993; Kuhn et al., 1994; Legg and Kamerling, 2001 (in press); Legg et al., 1995; Locat et al., 2001 (in press); Tappin et al., 2001 (in press); Watts and Raichlen, 1994).

These studies suggest that large local-source tsunamis could be generated by mechanisms other than those considered during licensing for SONGS 2 and 3, the basis for the 1995 SCE report. However, there have been no local runup studies based on this mechanism that are widely agreed upon, and certainly none for the SONGS site itself. As Dr. Legg indicates, tsunami runup maps are currently being prepared for San Diego County by individuals at the University of Southern California in conjunction with the Office of Emergency Services, but they are not currently available.

Commission staff accordingly concludes that although the proposed project may be threatened by tsunami, the major effect from an earthquake-generated tsunami would be site inundation. Possible inundation has been factored into the project design, and it would not adversely effect the stability of the site. There is also a potential for a submarine landslide to generate a tsunami that could threaten this site; however, current mapping and modeling do not provide any information of how the site would be effected by such an event. Even if the current models for locally-generated tsunami are insufficient, inundation of the pad by up to several feet of water should not damage the foundation pads or the storage casks.

Accordingly, the Commission finds that the stability of the site with respect to tsunami hazard can be assured, to the greatest extent feasible, consistent with section 30253 of the Coastal Act.

4.4.1.5. Bearing Capacity

The proposed ISFSI facility is a massive structure. The ISFSI facility for Unit 1, approved by the Commission in February 2000, will consist of a concrete pad 43 feet 6 inches wide by 188 feet long by 3 feet thick; the proposed pads for Units 2 and 3 will be of similar width, but may be longer as necessary to accommodate the module array. Assuming a unit weight of 145 pounds per cubic foot, the pad for Unit 1 will weigh approximately 3.5 million pounds. Each module consists of reinforced concrete shaped like a rectangular box 20 feet high, 9 feet wide and 23 feet long and weighs approximately 400,000 pounds. Into each module will be placed a stainless steel canister containing the spent fuel assemblies, weighing approximately 80,000 pounds. Thus, the 19 modules and pad approved for Unit 1 decommissioning will weigh approximately 12.6 million pounds. When completed, the complete project, which would consist of 104 modules, would weigh approximately 70 million pounds.

For perspective, this figure may be compared with the weight of the terrace deposits and the upper part of the San Mateo Formation formerly overlying the site. Since these deposits were approximately 70 feet thick, and had a unit weight of approximately 102-117 pounds per cubic foot, the volume formerly occupying the space above the Unit 1 pad weighed approximately 65 million pounds. Thus, even after the construction of the project, the weight applied to the San Mateo Formation at the site will be only about 20% of the pre-development weight.

More germane to the question of the ability of the site materials to support the ISFSI is a calculation of the bearing capacity of the San Mateo Formation relative to general or local shear failure. The applicant has supplied a calculation of static ultimate bearing capacity (Exhibit 14) indicating that, assuming a 67-foot square footing, the bearing capacity for the San Mateo Formation is 449,000 pounds per square foot. Commission staff has checked these calculations, and finds that the applicant may overestimate bearing capacity because (1), the project design specifications are for a rectangular (not square) pad only 43 feet six inches wide and (2), the effects of ground water, typically located at about elevation 5 MLLW (15 feet below grade), were not considered. Nonetheless, because the foundation will only be loaded to approximately 1750 pounds per square foot (Exhibit 15), a sufficient factor of safety exists to conclude that the static bearing capacity of the San Mateo Formation sands will not be exceeded.

The applicant also has submitted a dynamic analysis, SCE Calculation No. C-296-01.04, Rev. A (Exhibit 16), which demonstrates the capacity of the pad design under seismic loading, and an analysis of soil response to ground shaking using two bounding cases for estimates of soil properties (Exhibit 17). These calculations, which make use of 1.5 g horizontal and 1.0 g vertical ground accelerations (considerably higher than the NRC-approved SONGS criteria), demonstrates not only the adequacy of the foundation, but also shows that with the recommended steel reinforcement, the concrete pads will not fail during an earthquake with the specified ground accelerations.

Accordingly, the Commission finds that the materials at the site have sufficient bearing capacity to assure, to the greatest extent feasible, stability of the proposed development, consistent with section 30253 of the Coastal Act.

4.4.1.6. Coastal Erosion and Bluff Retreat

The proposed development lies within an industrial site, protected by a seawall, and has been protected from coastal erosion and bluff retreat for more than 25 years. To the south of the site, in the footwall of the Cristianitos fault, bedrock is the Monterey formation. This rock unit is known to be susceptible to landsliding throughout the state, and the seacliff in this area is collapsing through a series of large, ongoing landslides. This process appears to be the primary mechanism of bluff retreat in this region. To the north of the Cristianitos fault, bedrock consists of the relatively dense San Mateo Formation, a sandstone that is not highly susceptible to landsliding. Although no large landslides comparable to those to the south occur, the overall rate of seacliff retreat, measurable over geologic time (hundreds of thousands of years) would appear to be comparable, as no "point" or "embayment" in the coastline occurs where the bedrock types change. The mechanism for seacliff retreat in the San Mateo Formation are unclear, but the shape of the seacliff suggests dominantly marine process, such as undercutting, block collapse, and slumping of poorly consolidated upper bluff (terrace) materials.

The rate of bluff retreat in the San Onofre area is somewhat difficult to assess, due both to its episodic nature and to the varying mechanisms of retreat along the coast. There is no doubt that active bluff retreat is occurring south of the site, at San Onofre State Beach where bedrock is the Monterey Formation and where runoff has been concentrated through the creation of new drainage systems associated with the construction of Interstate 5 (Kuhn, 2000). In the vicinity of the proposed project, however, there has been little appreciable bluff retreat or headward erosion of the terrace deposits for at least the last 120 years. The U.S. Army Corps of Engineers reviewed U.S. Coast and Geodetic Surveys (USCGS) along the San Diego Coast and, based on their ability to locate all of the triangulation monuments installed by the USCGS, concluded that "the bluff line had, between 1889 and 1934, remained unchanged" (U.S. Army Corps of Engineers, 1960). The monuments also were located in 1954, indicating no measurable retreat of the bluff line at that time as well. Although no data are available since that time, comparison of aerial photographs and maps indicate that there has been little measurable bluff retreat through 1998 (Kuhn, 2000).

There is, however, substantial subaerial erosion of the terrace deposits and the Monterey Formation south of the SONGS site (Kuhn, 2000). This erosion takes the form of headward erosion of gullies, slumping of the face of bluffs, and deep-seated landslides. These landslides are seated

in the Monterey Formation south of the Cristianitos Fault, and do not affect the SONGS site, which is underlain by the dense sandstones of the San Mateo Formation.

In any case, any bluff erosion has been severely retarded over natural rates at the SONGS site because: 1) armoring of exposed natural and artificial cliff exposures in gunite, and 2) the installation of a seawall protecting the entire site. The former tends to protect the affected cliffs from subaerial erosion, and the latter effectively prevents marine erosion. The seawall consists of a sheet pile wall driven 18 feet below finish grade of the SONGS facility (to a depth of approximately 2 feet MLLW), a 2.5 inch layer of gunite secured by wire mesh, and a rock revetment extending seaward 12 feet from the seawall. Documents furnished by the applicant indicate that the sheet pile wall is subject to corrosion, including through-going holes. This, together with the shallow depth of emplacement, lack of foundation elements, and the lack of an engineered key to the rip-rock revetment, suggest that continued maintenance of the seawall may be necessary for its continued function. Nonetheless, the low bluff retreat rates indicate that it is not needed to guard against bluff retreat at the SONGS site.

The applicants indicate further that the seawall is not necessary for the protection of the proposed project; in particular the evaluation of tsunami hazard described above assumes that the seawall is not present. Given that section 30253 of the Coastal Act requires that new development not depend on shoreline protection devices, it is necessary to evaluate whether the proposed project would be safe from coastal erosion and bluff retreat without the seawall. No expected economic life of the development is available, but the site is intended as a temporary facility awaiting licensing of a Federal high-level nuclear waste depository, which will probably not be available for at least ten years. The SONGS Units 2 and 3 operating licenses expire in 2022.

Given the setback of the proposed pad, at least 180 feet from the seawall, and its elevation at approximately 20 feet MLLW, and the low rate of coastal bluff retreat where bedrock is the San Mateo Formation, the Commission finds that facility should be safe from coastal erosion for its anticipated useful life. Sea level rise that might occur over the expected life of the facility likewise is not expected to effect the site, given its elevation of 20 feet MLLW and its setback from the seawall.

Accordingly, the Commission finds that the proposed development will be safe from coastal erosion and bluff retreat and will not require the construction of protective devices that would substantially alter natural landforms along bluffs and cliffs, as required by section 30253 of the Coastal Act.

4.4.1.7. Slope Stability

The proposed project is located approximately 200 feet south of a cut slope approximately 70 feet high, and approximately 170 feet west of a somewhat lower cut slope. Both slopes are covered in gunite, although a small portion (approximately 1/3) of the slope to the north is not. During studies for the SONGS Unit 1 ISFSI facility (Southern California Edison Company, 1995), the applicant produced slope stability analyses to determine the minimum factor of safety of these slopes during seismic shaking corresponding to the design basis earthquake (described above). These analyses, performed using the method of Makdisi and Seed (1977), are for four cross sections through the cut

slopes (Exhibit 18), and demonstrate minimum factors of safety ranging from 1.77 to over 3. The study concluded that:

The small displacements estimated using the Makdisi-Seed procedure suggest that only minor sloughing of the near slope surface material is likely to occur during design basis earthquake ground shaking. Minor sloughing will not adversely affect the ISFSI which is located at distances greater than about 60 feet [sic] from the toe of the slopes. Therefore, slope stability will not be a concern for the ISFSI facility since the 60 feet offset provides a sufficient standoff distance.

Despite this conclusion, the applicant performed an additional evaluation to determine, if a slope failure were to occur, what distance the soil could be expected to travel (Hadidiafamjed, 2000). The concern was whether landslide material could bury the dry storage casks, blocking their cooling vents (a nuclear safety issue). This calculation indicated that the maximum distance the soil would travel would be 120 feet, and the site for the ISFSI was moved accordingly to isolate the site from the potential runout zone.

The Commission finds that these analyses adequately address the stability of the cut slopes adjacent to the proposed project. Concern has been raised that ground shaking during the maximum possible earthquake at the site may, in light of recent discoveries, exceed the design basis earthquake (see discussion above, under "ground shaking"). Nevertheless, the high factors of safety demonstrated by the calculations cited above suggest that it is reasonable to believe that the cut slopes will remain stable even during a much larger earthquake whose focus is even closer than the design basis earthquake.

South of the site, at San Onofre State Beach, several coalescing large active landslides affect the coastal bluff (Kuhn, 2000; Kuhn and McArthur, 2000). These slides are each seated within the Monterey Formation, which is known to contain weak layers and to be prone to landsliding throughout California. The Monterey Formation is not known to occur near the surface north of the Cristianitos fault, and landslides of the character occurring south of the fault have not been observed to the north of it. The SONGS site, lying north of the Cristianitos fault, is underlain by the San Mateo Formation to depths of at least 900 feet as confirmed through boreholes undertaken prior to development of SONGS Unit 1. Accordingly, there is very little risk that a landslide similar to those in San Onofre State Beach south of the SONGS site could involve the SONGS site itself. If the site is, nevertheless, subject to a slow-moving, deep seated landslide similar to those south of the site, this should be manifested by differential vertical movement across the site. Commission staff asked for, and received, settlement records from throughout the SONGS site. These records show the elevation of over 100 survey monuments as determined by repeated surveys extending from 1975 to 1999. Very little settlement occurred at the site, probably due primarily to the overconsolidation of the finish grade due to removal of the overlying terrace deposits. The maximum settlement observed is less than 0.1 inch, and there is no indication of differential settlement across the site, as might be expected during a rotational landslide.

Accordingly, the Commission finds that the stability of the slopes adjacent to and underlying the proposed project is assured, to the greatest extent feasible, consistent with section 30253 of the Coastal Act.

4.4.1.8. Conclusions

For all of the reasons described above, the Commission finds that the proposed project will minimize risk to life and property pursuant to section 30253(1) and, pursuant to section 30253(2), will not create nor contribute significantly to erosion, geologic instability, or destruction of the site or surrounding area. Further, the proposed project will not require the construction of protective devices, and does not depend on the existing seawall installed at the site.

4.4.2 Public Access and Recreation

Coastal Act Section 30211 states:

Development shall not interfere with the public's right of access to the sea where acquired through use or legislative authorization, including, but not limited to, the use of dry sand and rocky coastal beaches to the first line of terrestrial vegetation.

Coastal Act Section 30220 states:

Coastal areas suited for water-oriented recreational activities that cannot be readily provided at inland water areas shall be protected for such uses.

The nearest public access to coastal waters or recreation areas is at San Onofre State Beach, directly to the north and south of SONGS. A pathway directly in front of the SONGS site connects these two beach areas. There is no public access to the beach through the SONGS site.

Public access to and recreation on San Onofre State Beach will not be restricted in any way by the proposed project. Additionally, the pathway in front of the SONGS site will remain accessible for pedestrian passage. The project will take place entirely within the SONGS 1, 2, and 3 boundaries. No development will extend onto or adjoin San Onofre State Beach.

4.4.2.1 Conclusion

Because the proposed project will not affect public access or recreation areas, the Commission finds that the proposed project is consistent with Coastal Act Sections 30211 and 30220.

4.4.3 Marine Resources, Water Quality, and Environmentally Sensitive Habitat Areas

Coastal Act Section 30230 states:

Marine resources shall be maintained, enhanced, and where feasible, restored. Special protection shall be given to areas and species of special biological or economic significance. Uses of the marine environment shall be carried out in a manner that will sustain the biological productivity of coastal waters and that will maintain healthy populations of all species of marine organisms adequate for long-term commercial, recreational, scientific, and educational purposes.

Coastal Act Section 30231 states in part:

The biological productivity and the quality of coastal waters... appropriate to maintain optimum populations of marine organisms and for the protection of human health shall be maintained and, where feasible, restored....

Coastal Act Section 30240 states in part:

Environmentally sensitive habitat areas shall be protected against any significant disruption of habitat values, and only uses dependent on those resources shall be allowed within those areas.

4.4.3.1 Marine Resources and Water Quality

According to the applicants, there will be no liquid discharges from the spent fuel storage facility. Existing drainage infrastructure may be modified to accommodate the new facility but the project will not change the existing drainage pattern from the site. The existing storm or yard drains, water treatment facilities, and sump will not be altered. However, during construction of the proposed project, stormwater may be generated and could contribute to sediment loading of receiving waters.

Currently, stormwater and other non-radioactive liquid waste streams generated by SONGS 1 are discharged under an existing industrial National Pollutant Discharge Elimination System (NPDES) permit (#CA0001228), renewed by the San Diego Regional Water Quality Control Board on February 11, 2000. The proposed project will be covered under this NPDES permit. The permit contains specific numeric effluent limits for all suspected pollutants associated with industrial activities at SONGS 1 and runoff from the site. Stormwater flows are co-mingled with other industrial discharges and monitored for effluent limit exceedances at several stages prior to final discharge through the SONGS 1 outfall. The applicants are required to report any exceedances to the RWQCB within 24 hours and propose remedies for immediate compliance with the effluent limits. During the construction of the proposed project, the applicants will continue to perform routine sampling of liquid effluents consistent with the SONGS 1 NPDES permit and NRC effluent control procedures.

Best Management Practices contained in the applicants' Storm Water Pollution Prevention Plan (prepared as a condition to the NPDES permit) specifically assess the potential for discharges of hazardous waste and material to the ocean through plant site runoff, sludge and waste disposal, spillage or leaks, and drainage from material storage areas. In addition, training for good housekeeping practices and emergency response is provided to personnel, and regular site inspections are performed. Water used for dust suppression will be collected and either filtered or treated at the wastewater treatment plant prior to discharge. Stormwater runoff will be collected, co-mingled with other discharges, monitored, and treated when necessary, prior to discharge through the SONGS 1 outfall.

However, during precipitation events, exposed debris or soil materials can runoff into the SONGS 1 yard drains and potentially contribute to increased sediment loading to receiving waters. This

increased sediment loading can potentially increase turbidity of coastal waters, resulting in decreased water clarity, and over the long-term, can impact epifaunal organisms. **Special Condition 1** requires the applicants dispose of construction debris, at the earliest practicable opportunity, generated as part of the proposed project at an appropriate offsite facility. The condition also requires the applicants to cover or contain any debris or material left on-site that could potentially contribute to increased sediment loading to receiving waters during precipitation events.

Special Condition 2 requires the applicants to monitor and remove sediment and other material collected in an on-site sump before such sediment or material reach quantities sufficient to pose a risk to the proper functioning of the sump. This sump has a nominal capacity of 10,000 gallons and collects stormwater flowing into yard drains from the SONGS 1 site. The sump has a weir configuration designed to trap and settle sediment. As mentioned above, these waste discharges are sampled and treated, if necessary, prior to discharge to receiving waters. However, if the sump is not properly monitored and maintained, its ability to effectively remove sediment can be compromised, resulting in additional sediment loading and turbidity to receiving waters, as discussed above.

In addition to regulating runoff from SONGS 1 essentially as a point source pollutant under the existing NPDES permit, SONGS 1 is currently covered under a general stormwater NPDES permit for industrial activities. However, because the effluents limits contained in the individual NPDES permit, as described above, are more specific and stringent than the general stormwater NPDES permit, compliance with the former provides a higher level of protection to receiving waters.

4.4.3.2 Environmentally Sensitive Habitat Areas ("ESHA")

The proposed project will take place on land that is currently occupied by SONGS Unit 1, an existing, disturbed industrial site with no on-site biological resources. The entire SONGS site is situated upcoast and downcoast from the San Onofre State Beach and is bordered on the west by the Pacific Ocean and beach area. According to the resource ecologist overseeing the San Onofre State Beach, high-quality gnatcatcher coastal sage habitat exists in the state beach approximately 1.5 miles north of SONGS 1 and 0.5 mile south of the SONGS Units 2 and 3 (Pryor, 2000). Gnatcatchers have been observed in this habitat. The U.S. Fish and Wildlife Service listed the gnatcatcher in 1993 as a federal threatened species.

The proposed project will involve the installation of lighting as required by NRC federal regulations. The U.S. Fish and Wildlife Service has previously required that artificial lighting from development be shielded or angled away from gnatcatcher habitat to minimize potential threats such as predation, collision, and decreased breeding success (Miller, 2000). Current lighting requirements for the SONGS 1, 2, and 3 site are specified by NRC federal regulations. After SONGS 1 is fully decommissioned, the existing perimeter lighting will be removed. New lighting will be installed, consistent with NRC federal regulations, for the SONGS 1, 2, and 3 fuel storage facility. However, the new lighting will not be more intense than the existing SONGS 1 perimeter lighting. Thus, there is no potential for project-related lighting to adversely impact nearby environmental sensitive habitat areas or the gnatcatcher.

Applicants: Southern California Edison et al.

Page 30

The U.S. Fish and Wildlife Service has established a 60 dbA (decibel) threshold or criterion for analyzing noise impacts to the gnatcatcher or when assessing the level of a take of this species (Hays, 2000). Noise levels at or above this threshold are assumed to indirectly affect the reproductive success of songs birds, including the gnatcatcher, increase stress levels, and interfere with predator avoidance, among other impacts (Miller, 2000). Thus, if project-related noise reached beyond the SONGS site and into the gnatcatcher habitat, which includes Units 1, 2, and 3, the gnatcatcher may be impacted, especially during nesting season (February 1 to July 15). However, according to the applicants, any noise generated from project-related activities will be short-term and is not expected to result in any noticeable change in noise levels beyond the entire SONGS site. Furthermore, the entire SONGS site is physically sited 50-70 feet below the surrounding geography, providing a noise buffer. Any project-related noise extending beyond the SONGS site is expected to attenuate to undetectable levels before reaching nearby gnatcatcher habitat. Thus, the proposed project will not disrupt the resources of the adjacent ESHA.

4.4.3.3 Conclusion

The Commission finds that with the imposition of **Special Conditions 1 and 2**, the proposed project will be carried out in a manner that will sustain the biological productivity of coastal waters, maintain healthy populations of all potentially affected species of marine organisms, and protect environmentally sensitive habitat areas in conformity with the requirements of Coastal Act Sections 30230, 30231, and 30240.

4.4.4 Visual Quality

Coastal Act Section 30251 states in part:

The scenic and visual qualities of coastal areas shall be considered and protected as a resource of public importance. Permitted development shall be sited and designed to protect views to and along the ocean and scenic coastal areas, to minimize the alteration of natural land forms, to be visually compatible with the character of surrounding areas, and, where feasible, to restore and enhance visual quality in visually degraded areas.

The SONGS site is situated directly on the Pacific Ocean and bordered on the east by Interstate 5. With the exception of the SONGS 1 sphere enclosure building (scheduled for demolition in 2006), which is partially visible from Old Highway 101 and Interstate 5, current views of the SONGS 1 site are generally obscured or blocked. Looking south from the bluff north of SONGS, the bluff blocks any view of the project area. From south of the SONGS site, Units 2 and 3 block views of the project area. From the beach looking landward, an existing SONGS seawall blocks most views into the project area.

 $^{^2}$ It should be noted that a railroad line and Interstate Highway 5 lies directly to the east of SONGS and the San Onofre State Beach.

Applicants: Southern California Edison et al.

Page 31

The proposed fuel storage facility is estimated to reach 42 feet or 22 feet above the existing grade, but will not be visible from areas accessible to the public. Similarly, construction equipment, including a mobile crane, will not be visible from outside the SONGS site.

4.4.4.1 Conclusion

Since the proposed project will not be visible from areas accessible to the public, the Commission finds that the proposed project is consistent with the requirements of Coastal Act section 30251.

4.4.5 Air Quality

Coastal Act Section 30253(3) requires that:

New development shall:

...

(3) Be consistent with requirements imposed by an air pollution control district or the State Air Resources Control Board as to each particular development.

Since the proposed project's emission sources will be construction or other equipment brought on the project site temporarily, the San Diego County APCD will require permits, if necessary, for these individual sources of emissions. Internal combustion (IC) engines powering, for example, generators and pumps, portable diesel generators, cranes and other construction equipment brought on the SONGS 1 site will either have individual APCD permits, California registration³, or be permit exempt (drive engines that power construction equipment are exempted by the APCD).

4.4.5.1 Conclusion

The Commission finds that the project will be carried out consistent with the requirements of the San Diego APCD and thus is consistent with Coastal Act Section 30253(3).

4.5 THE CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA)

Section 13096 of the Commission's administrative regulations requires Commission approval of CDP applications to be supported by a finding showing the application, as modified by any conditions of approval, to be consistent with any applicable requirements of the California Environmental Quality Act (CEQA). Section 21080.5(d)(2)(A) of the CEQA prohibits approval of a proposed development if there are feasible alternatives or feasible mitigation measures available that would substantially lessen any significant impacts that the activity may have on the environment.

The project as conditioned herein incorporates measures necessary to avoid any significant environmental effects under the Coastal Act, and there are no less environmentally damaging

³ Portable equipment can be registered with a local air district or the state Air Resources Board. The registration process imposes emission limits on certain portable equipment (e.g., internal combustion engines, abrasive blast booths) but is considered a more expeditious permitting process.

Applicants: Southern California Edison et al.

Page 32

feasible alternatives. Therefore, the Commission finds that the proposed project is consistent with the resource protection policies of the Coastal Act and with the CEQA.

Applicants: Southern California Edison et al.

Page 33

APPENDIX A STANDARD CONDITIONS

- 1. <u>Notice of Receipt and Acknowledgment</u>. The permit is not valid and development shall not commence until a copy of the permit, signed by the permittee or authorized agent, acknowledging receipt of the permit and acceptance of the terms and conditions, is returned to the Commission office.
- 2. <u>Expiration</u>. If development has not commenced, the permit will expire two years from the date on which the Commission voted on the application. Development shall be pursued in a diligent manner and completed in a reasonable period of time. Application for extension of the permit must be made prior to the expiration date.
- 3. <u>Interpretation</u>. Any questions of intent of interpretation of any condition will be resolved by the executive director or the Commission.
- 4. <u>Assignment</u>. The permit may be assigned to any qualified person, provided assignee files with the Commission an affidavit accepting all terms and conditions of the permit.
- 5. <u>Terms and Conditions Run with the Land</u>. These terms and conditions shall be perpetual, and it is the intention of the Commission and the permittee to bind all future owners and possessors of the subject property to the terms and conditions.

APPENDIX B SUBSTANTIVE FILE DOCUMENTS

Coastal Development Permit Application Materials

Application for Coastal Development Permit E-00-014, as amended.

Agency Permits and Orders

Order No. 2000-04, NPDES Permit No. CA0001228, Waste Discharge Requirements for the Southern California Edison Company San Onofre Nuclear Generating Station, Unit 1, San Diego County.

Environmental Documents and Reports

"Final Environmental Statement Related to the Operation of the San Onofre Nuclear Generating Station Unit 1", Southern California Edison Company and San Diego Gas and Electric Company, Docket No. 50-206, approved by the U.S. Atomic Energy Commission, October 1973.

"Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities-NUREG-0586", prepared by the U.S. Nuclear Regulatory Commission, August 1988.

"Environmental Assessment by the Office of Nuclear Reactor Regulation Relating to the Conversion of the Provisional Operating License to a Full-Term Operating License", Southern California Edison Company and San Diego Gas and Electric Company, San Onofre Nuclear Generating Station Unit 1, Docket Number 50-206, approved by the U.S. Nuclear Regulatory Commission September 16, 1991.

Post Shutdown Decommissioning Activities Report for San Onofre Nuclear Generating Station Unit 1, submitted to the U.S. Nuclear Regulatory Commission, December 1998.

Storm Water Pollution Prevention Plan, as amended, submitted to the California Regional Water Quality Control Board, San Diego Region, September 27, 2000.

Lease Documents

Grant of Easement to Southern California Edison Company and San Diego Gas and Electric Company by United States Department of the Navy, May 12, 1964.

References cited in section 4.4.1

- Abrahamson, N. A., and Silva, W. J., 1997, Empirical response spectra attenuation relations for shallow crustal earthquakes: Seismological Research Letters, v. 68, p. 94-127.
- Bohannon, R., Eittreim, S., Childs, J., Geist, E., Legg, M., Lee, C., Sorlien, C., and Busch, L., 1990, A seismic-reflection study of the California continental borderland [abs]: Eos, Transactions of the American Geophysical Union, v. 71, p. 1631.
- Bohannon, R. G., and Gardner, J., 2001 (in press), Submarine landslides of San Pedro Sea Valley, southwest Los Angeles basin, *in* Watts, P., Synolakis, C. E., and Bardet, J. P., eds., Prediction of underwater landslide hazards: Rotterdam, Balkema.

- Bohannon, R. G., and Geist, E., 1998, Upper crustal structure and Neogene tectonic development of the California continental borderland: Geological Society of America Bulletin, v. 110, no. 6, p. 779–800.
- Boore, D. M., Joyner, W. B., and Fumal, T. E., 1997, Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: Seismological Research Letters, v. 68, p. 128-153.
- Campbell, K. W., 1997, Empirical near-source acceleration relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra: Seismological Research Letters, v. 68, p. 154-179.
- Collins, S. J., 1997, Director's Decision Under 10 CFR Section 2.206: U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, 28 p.
- Crouch, J. K., and Suppe, J., 1993, Late Cenozoic tectonic evolution of the Los Angeles basin and inner California borderland: A model for core complex-like crustal extension: Geological Society of America Bulletin, v. 105, no. 11, p. 1415–1434.
- Ehlig, P. L., 1977, Geologic report on the area adjacent to the San Onofre Nuclear Generating Station, northwestern San Diego County, California unpublished geologic report for Southern California Edison Company, 26 p.
- Field, M. E., and Edwards, B. D., 1993, Submarine landslides in a basin and ridge setting, southern California, *in* Schwab, W. C., Lee, H. J., and Twichell, D. C., eds., Submarine landslides: Selected studies in the U.S. Exclusive Economic Zone, U.S. Geological Survey Bulletin 2002, p. 176-183.
- Franklin, J. P., and Kuhn, G. G., 2000, Paleoseismic features exposed by trenching the lowest coastal terrace at Carlsbad, California, *in* Legg, M. R., Kuhn, G. G., and Shlemon, R. J., eds., Neotectonics and coastal instability: Orange and northern San Diego Counties, California: Long Beach, California, AAPG-Pacific Section and SPE-Western Section, p. 1-13.
- Fugro, Inc., 1974a, Analysis of C and D type features at the San Onofre Nuclear Generating Station: Fugro, Inc. unpublished geologic report for Southern California Edison Company, 19 p.
- Fugro, Inc., 1974b, Analysis of geologic features at the San Onofre Nuclear Generating Station: Fugro, Inc. unpublished geologic report for Southern California Edison Company, 32 p.
- Fugro, Inc., 1975a, Geomorphic analysis of terraces in San Juan and Bell Canyons, Orange County, California: Fugro, Inc. unpublished geologic report for Southern California Edison Company 74-069-01, 11 p.
- Fugro, Inc., 1975b, Summary of geomorphic and age data for the first emergent terrace (QT_1) at the San Onofre Nuclear Generating Station: Fugro, Inc. unpublished geologic report for Southern California Edison Company 74-069-02, 30 p.
- Fugro, Inc., 1976, Final report on geologic features at the San Onofre Nuclear Generating Station, Units 2 and 3: Fugro, Inc. unpublished geologic report for Southern California Edison Company, 24 p.

- Fugro, Inc., 1977, Geologic investigation of offsets in Target Canyon, Camp Pendleton, California: Fugro, Inc. unpublished geologic report for Southern California Edison Company 77-206-03, 19 p.
- Gastil, R. G., Kies, R., and Melius, D. J., 1979, Active and potentially active faults; San Diego County and north-western-most Baja California, *in* Abbott, P. K., and Elliott, W. J., eds., Earthquakes and other perils, San Diego region, San Diego Association of Geologists Field Trip Guidebook, p. 47-60.
- Geomatrix Consultants Inc., 1994, Seismic Source Characterization: Geomatrix Consultants, Inc., unpublished report, 86 p.
- Geomatrix Consultants Inc., 1995a, Earthquake recurrence relationships: Geomatrix Consultants, Inc., unpublished report, 9 p.
- Geomatrix Consultants Inc., 1995b, Maximum magnitude distributions: Geomatrix Consultants, Inc., unpublished report, 4 p.
- Grant, L. B., Mueller, K. J., Gath, E. M., Cheng, H., Edwards, R., Lawrence, Munro, R., and Kennedy, G. L., 1999, Late Quaternary uplift and earthquake potential of the San Joaquin Hills, southern Los Angeles basin, California: Geology, v. 27, no. 11, p. 1031–1034.
- Greene, H. G., Bailey, K. A., Clarke, S. H., Ziony, J. I., and Kennedy, M. P., 1979, Implications of fault patterns of the inner Continental Borderland between San Pedro and San Diego, *in* Abbott, P. L., and Elliott, W. J., eds., Earthquakes and other perils -- San Diego Region, San Diego Association of Geologists Guidebook, p. 21-27.
- Hadidiafamjed, H., 2000, ISFSI Pad Slope Stability Evaluation: Southern California Edison Company engineering calculations C-296-01.03, 60 p.
- Jennings, C. W., 1994, Fault activity map of California and adjacent areas: California Division of Mines and Geology, Geologic Data Map No. 6, scale 1:750,000.
- Kuhn, G., Legg, M. R., and Frost, E., 1994, Large pre-historic earthquake(s) in coastal San Diego County, California, Paleoseismology Workshop Proceedings, September 1994: Marshall, California, U.S. Geological Survey Open-File Report 94-568, p. 100-103.
- Kuhn, G. G., 2000, Sea cliff, canyon, and coastal terrace erosion between 1887 and 2000: San Onofre State Beach, Camp Pendleton Marine Corps Base, San Diego County, California, *in* Legg, M. R., Kuhn, G. G., and Shlemon, R. J., eds., Neotectonics and coastal instability: Orange and northern San Diego Counties, California: Long Beach, California, AAPG-Pacific Section and SPE-Western Section, p. 31-87.
- Kuhn, G. G., Legg, M. R., Johnson, A., Shlemon, R. J., and Frost, E. G., 1996, Paleoliquefaction evidence for large pre-historic earthquake(s) in north-coastal San Diego County, California, *in* Munasinghe, T., and Rosenberg, P., eds., Geology and natural resources of coastal San Diego county, California, San Diego Association of Geologists Field Trip Guidebook, p. 16-24.
- Kuhn, G. G., Legg, M. R., and Shlemon, R. J., 2000, Neotectonics in the north coastal area, San Diego County, California, *in* Legg, M. R., Kuhn, G. G., and Shlemon, R. J., eds.,

- Neotectonics and coastal instability: Orange and northern San Diego Counties, California: Long Beach, California, AAPG-Pacific Section and SPE-Western Section, p. 88-104.
- Kuhn, G. G., and McArthur, D. S., 2000, Beaches and sea cliffs of central and northern San Diego County, *in* Legg, M. R., Kuhn, G. G., and Shlemon, R. J., eds., Neotectonics and coastal instability: Orange and northern San Diego Counties, California: Long Beach, California, AAPG-Pacific Section and SPE-Western Section, p. 104-122.
- Kulikov, E. A., Rabinovich, A. B., Thomson, R. E., et al., 1996, The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska: Journal of Geophysical Research, v. 101, no. C3, p. 6609-6615.
- Legg, M. R., and Kamerling, M. J., 2001 (in press), Large-scale basement-involved landslides, *in* Watts, P., Synolakis, C. E., and Bardet, J. P., eds., Prediction of underwater landslide hazards: Rotterdam, Balkema.
- Legg, M. R., Kuhn, G., Johnson, J., and Frost, E. G., 1995, Prehistoric tsunami investigations in southern California [expanded abstract], Proceedings, Tsunami Deposits: Geologic Warnings of Future Inundation: Workshop at University of Seattle, Washington, p. 33-34.
- Legg, M. R., Nicholson, C., and Sorlien, C., 1992, Active faulting and tectonics of the inner California Continental Borderland [abs]: Eos, Transactions of the American Geophysical Union, v. 73, p. 588.
- Locat, J., Locat, P., and Lee, H. J., 2001 (in press), Numerical modeling of the mobility of the Palos Verdes debris avalanche, California and its implication for the generation of tsunamis, *in* Watts, P., Synolakis, C. E., and Bardet, J. P., eds., Prediction of underwater landslide hazards: Balkema, Rotterdam.
- Makdisi, F., and Seed, H. B., 1977, Simplified procedure for estimating dams and embankment earthquake-induced deformations: Journal of Soil Mechanics and Foundation Engineering, v. 104, p. 849-867.
- Miranda, E., and Aslani, H., 2001, Brief report on the September 3, 2000 Yountville/Napa, California earthquake: Berkeley Earth Engineering Research Laboratory, on line report http://www.eerc.berkeley.edu/yountville/.
- Nicholson, C., Sorlien, C. C., and Legg, M. R., 1993, Crustal imaging and extreme Miocene extension of the Inner Continental Borderland [abs]: Geological Society of America Abstracts with Programs, v. 25, p. 418.
- Peterson, M., Beeby, D., Bryant, W., Cao, C., Cramer, C., Davis, J., Reichle, M., Saucedo, G., Tan, S., Taylor, G., Toppozada, T., Treiman, J., and Wills, C., 1999, Seismic shaking hazard maps of California: California Division of Mines and Geology, Seismic Shaking Hazard Maps, Map Sheet 48, scale various.
- Peterson, M. D., Byrant, W. A., Cramer, C. H., Cao, T., Reichle, M. S., Frankel, A. D., Leinkaemper, J. J., McCrory, P. A., and Schwarta, D. P., 1996, Probabilistic seismic hazard assessment for the state of California: California Division of Mines and Geology Open File Report 96-08, 33 p.

- Rabinovich, A. B., Thomson, R. E., Kulikov, E. A., et al., 1999, The landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska: A case study: Geophysical Research Letters, v. 26, no. 19, p. 3009-3012.
- Rial, J. A., 1996, The anomalous seismic response of the ground motion at the Tarzana Hill site during the Northridge 1994 southern California earthquake: A resonant, sliding block?: Bulletin of the Seismological Society of America, v. 86, p. 1714-1723.
- Risk Engineering, Inc., 1995, Seismic Hazard at San Onofre Nuclear Generating Station: Risk Engineering, Inc., unpublished report.
- Rivero, C., Shaw, J. H., and Mueller, K., 2000, Oceanside and Thirtymile Bank blind thrusts: Implications for earthquake hazards in southern California: Geology, v. 28, no. 10, p. 891-894.
- Sadigh, K., Chang, C.-Y., Egan, M. A., Makdisi, F., and Youngs, R. R., 1997, Attenuation relationships for shallow crustal earthquakes based on California strong motion data: Seismological Research Letters, v. 68, p. 180-189.
- SCEC, 2001, Southern California Earthquake Data Center: Southern California Earthquake Center, http://www.scecdc.scec.org/
- Seed, H. B., Tokimatsu, K., Harder, L. F., Jr., and Chung, R. M., 1985, Influence of SPT procedures in soil liquefaction resistance evaluations: Journal of Geotechnical Engineering, v. 111, no. 12, p. 1425-1445.
- Shlemon, R. J., 1977, Geomorphic analysis of Fault "E" Camp Pendleton, California: Roy J. Shlemon and Associates, Inc., unpublished geologic report for Southern California Edison Company, 20 p.
- Shlemon, R. J., 1979, Age of "Dana Point," "Vaciadero," and "Carr" Faults Capistrano Embayment coastal area, Orange County, California: Roy J. Shlemon and Associates, Inc. unpublished geologic report for Southern California Edison Company, 19 p.
- Shlemon, R. J., 1987, The Cristianitos fault and Quaternary geology, San Onofre State Beach, California, Geological Society of America Centennial Field Guide--Cordilleran Section: Boulder, CO, Geological Society of America, p. 171-174.
- Shlemon, R. J., 2000, State-of-the-art to standard-of-practice: Active faults, paleoliquefaction and tsunamis in the Carlsbad area, San Diego County, California: Geological Society of America Abstracts with Programs, v. 32, no. 7, p. A-121.
- Southern California Edison Company, 1995, Final report, geotechnical investigation of alternate independent spent fuel storage installation (ISFSI) unpublished geotechnical report.
- Southern California Edison Company, 1998, Final safety analysis report (UFSAR), San Onofre Nuclear Generating Station, Units 2 and 3, Docket numbers 50-361 and 50-362, Southern California Edison Company, et al.: Southern California Edison Company, version 13.
- Spudich, P., and al., e., 1997, Sea96 -- a new predictive relation for earthquake ground motions in extensional tectonic regimes: Seismological Research Letters, v. 68, no. 1, p. 190-198.
- Tappin, D. R., Watts, P., McMurtry, G. M., Lafoy, Y., and Matsumoto, T., 2001 (in press), Prediction of slump-generated tsunamis: The July 17, 1998 Papua New Guinea tsunami, *in*

- Watts, P., Synolakis, C. E., and Bardet, J. P., eds., Prediction of underwater landslide hazards: Balkema, Rotterdam.
- Toppozada, T. R., Real, C. R., Bezore, S. P., and Parke, D. L., 1979, Compilation of pre-1900 California earthquake history; annual technical report -- fiscal year 1978-79: California Division of Mines and Geology Open-File Report 79-6.
- U.S. Army Corps of Engineers, 1960, Beach erosion control report on cooperative study of San Diego County, California: U.S. Army Corps of Engineers W004-193-ENG-5196.
- U.S. Nuclear Regulatory Commission, 1975, Safety evaluation of the geologic features at the site of the San Onofre Nuclear Generating Station, Units 2 and 3: U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation Report Docket Numbers 50-206, 50-361, 50-362, 24 p.
- U.S. Nuclear Regulatory Commission, 1981, Safety evaluation report related to the operation of San Onofre Nuclear Generating Station, Units 2 and 3, Docket numbers 50-361 and 50-362, Southern California Edison Company, et al.: U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, NUREG-0712.
- Watts, P., and Raichlen, F., 1994, Water waves generated by underwater landslides [abs]: Seismological Research Letters, v. 65, p. 25.
- Woodward-Clyde Consultants, 1995a, Attenuation relationships: Woodward-Clyde Consultants unpublished report, 100 p.
- Woodward-Clyde Consultants, 1995b, Time histories for fragility analysis: Woodward-Clyde Consultants unpublished report, 18 p.

Other

- Pryor, David. California Department of Parks and Recreation, Orange Coast District. Personal Communication. October 11, 2000.
- Miller, Will. U.S. Fish and Wildlife Service, Carlsbad District. Personal Communication. January 26, 2000.
- Spear, Dan. San Diego Air Pollution Control District. Personal Communication. October 25, 2000.